Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.
نویسندگان
چکیده
High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF.
منابع مشابه
Ibuprofen Modulates NF- B Activity but Not IL-8 Production in Cystic Fibrosis Respiratory Epithelial Cells
Background: High-dose ibuprofen is clinically effective in cystic fibrosis (CF); however, its molecular mechanisms are poorly understood. Objective: To test the hypothesis that clinically relevant concentrations of ibuprofen suppress activation of nuclear factor (NF)B and thus down-regulate stimulated interleukin (IL)-8 production in CF respiratory epithelial cells. Methods: The majority of exp...
متن کاملNonsteroidal anti-inflammatory drugs upregulate function of wild-type and mutant CFTR.
Small-scale clinical trials show that treatment of cystic fibrosis (CF) patients with ibuprofen, a nonsteroidal anti-inflammatory drug, improves the symptoms of CF and slows down the decline of lung function. Paradoxically, ibuprofen inhibits ligand-stimulated CF transmembrance conductance regulator (CFTR) activity. The aim of the present study was to investigate the effects of ibuprofen on CFT...
متن کاملIbuprofen modulates NF-kB activity but not IL-8 production in cystic fibrosis respiratory epithelial cells.
BACKGROUND High-dose ibuprofen is clinically effective in cystic fibrosis (CF); however, its molecular mechanisms are poorly understood. OBJECTIVE To test the hypothesis that clinically relevant concentrations of ibuprofen suppress activation of nuclear factor (NF)-kappaB and thus down-regulate stimulated interleukin (IL)-8 production in CF respiratory epithelial cells. METHODS The majority...
متن کاملMaintaining Respiratory Health in Cystic Fibrosis Patients
Cystic fibrosis (CF) is an inherited disease that primarily affects the lungs and the digestive system, however, it also affects a number of other organs and systems. More than 90% of mortality of CF patients is due to lung complications. Healthy lungs are important for a long life for people with CF, We will discuss two important topics for maintaining respiratory health. Chronic use of drug...
متن کاملNew use for an old drug: COX‐independent anti‐inflammatory effects of sulindac in models of cystic fibrosis
BACKGROUND AND PURPOSE Pulmonary disease is the main cause of morbidity and mortality in cystic fibrosis (CF) patients due to exacerbated inflammation. To date, the only anti-inflammatory drug available to CF patients is high-dose ibuprofen, which can slow pulmonary disease progression, but whose cyclooxygenase-dependent digestive adverse effects limit its clinical use. Here we have tested suli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 311 2 شماره
صفحات -
تاریخ انتشار 2016